
Optimal kinematics of supercoiled filaments
FRANCESCA MAGGIONI1, FLORIAN A. POTRA2 AND MARIDA BERTOCCHI1

1Department of Mathematics Statistic, Computer Science and Applications, University of Bergamo ITALY, francesca.maggioni@unibg.it − marida.bertocchi@unibg.it
2Department of Mathematics & Statistic, University of Maryland, Baltimore County, U.S.A., potra@math.umbc.edu

ABSTRACT

In this poster we propose kinematics of writhing and coiling of closed fila-
ments as numerical solutions of the elastic deformation energy minimization.
Preliminary work [1] [2] is here extended to require a monotonically decreas-
ing behaviour of the deformation energy of the system, favoring coils forma-
tion for given initial and final conditions. The analysis is performed by using
a simple thin filament model of circular cross-section under conservation of
self-linking number with elastic energy evaluated by means of bending and
torsional influence. Time evolution parameters are described by means piece-
wise polynomial transformations based on cubic spline. Proper constraints are
imposed so that the transformation is globally C2 and the value of the param-
eters at grids points are the unknowns in a large-scale optimization problem.
These results may find useful applications in modelling natural phenomena,
from magnetic field dynamos in astrophysical flows to DNA packing in cell
biology [3].

1 The filament model

The filament F is modelled by a thin inexestensible rod of length L = 2π and
of uniform circular cross–section of area A = πa2 (a ≪ L).

The axis C is a simple, smooth space curve X = X (ξ) where ξ ∈ [0, 2π].

2 Measures of filament coiling

2.1 Measures of coiling ( K), folding ( Wr) and twist ( Tw)

Let C be a closed, smooth, simple curve in R
3 given by X (ξ) : [0, L] −→ R

3,
with curvature c (ξ) and torsion τ (ξ) where ξ is a parameter along the curve
and t̂(ξ) ≡ X

′(ξ)/‖X′(ξ)‖ is the unit tangent to C at ξ.

We consider the following quantities:

• normalized total curvature

K :=
1

2π

∮

C

c (ξ) ‖X′(ξ)‖dξ ; (1)

• writhing number (Fuller 1971)

Wr :=
1

4π

∮

C

∮

C

t̂(ξ)×t̂(ξ∗) · [X(ξ) − X(ξ∗)]

|X(ξ) − X(ξ∗)|3
‖X′(ξ)‖‖X′(ξ∗)‖dξdξ∗ ; (2)

• total twist number

Tw :=
1

2π

∮

C

τ(ξ)‖X′(ξ)‖dξ +
1

2π
[Θ]F = T + N , (3)

where T is the normalized total torsion and N the normalized intrinsic
twist of the fibers of F around C .

2.2 Călug ăreanu–White formula

In the case of a closed filament F in isolation the sum of Wr and Tw is a topo-
logical invariant according to the well-known formula:

Lk = Wr + Tw , (4)

where Lk is the linking number of the filament F .

3 Kinematic equations for folding mechanism

We consider a family of time-dependent curves X = X (ξ, t, n) (where t is a
kinematical time, see [1] and [2]), a sub-class of Fourier knots, given by:

X = X(ξ, t, n) :







x = [a(t) cos (ξ) + b(t) cos (nξ)] /l(t)
y = [c(t) sin (ξ) + d(t) sin (nξ)] /l(t)
z = [e(t) sin (ξ)] /l(t)

, (5)

where:

• The integer n controls the number N = n − 1 of coils produced.

• a(t), b(t), c(t), d(t), e(t) are time-dependent functions. Notice than in [1],
time t was merely a kinematic parameter, while an appropriate time-
dependence prescription should be dictated by the particular physical
process considered. See Section 5 for the model adopted to determine
a(t), b(t), c(t), d(t), e(t).

• In order to ensure the inextenisibility we have normalized by the length
function

l(t) =
1

2π

∫ 2π

0

[

(

∂x

∂ξ

)2

+

(

∂y

∂ξ

)2

+

(

∂z

∂ξ

)2
]1/2

dξ . (6)

This rescaling ensures that the total length is kept fixed at L = L(0) = 2π.

• Eqs. (5) describe the time evolution of closed curves with initial condition
t = 0 chosen in orden to originate from a plane circle and to evolve to
form singly or multiply coiled configurations (tfin = 12) as follows:

Reidemeister type I move

4 Energetics of folding

Let us consider the linear elastic theory for a uniformly homogeneous and
isotropic filament (χ = Kb/Kt = 1 with Kb bending rigidity and Kt torsional
rigidity).

• The deformation energy is given (to first order) by

Ẽ = Ẽb + Ẽt + . . . (higher-order terms) (7)

where

Ẽb(t) =
Eb(t)

E0
=

1

2π

∮

C

(c(ξ, t))2‖X′(ξ)‖dξ norm. bending energy

Ẽtw(t) = Et|Ω0
= (Lk − Wr (t))

2
norm. mean twist energy

E0 =
Kb

2

∮

C

c2
0 ds reference energy = πKb .

• According to Michell–Zajac instability (1889-1962) we set Lk = 3.
The energy that is going to be relaxed in coiling is:

Ẽ(0) = Ẽ0 = 1 + Lk2 = 10 ,

Ẽ(tfin) = Ẽfin = 8.5 .

5 Coiling under elastic energy minimization

Kinematics functions a(t), b(t), c(t), d(t), e(t) from curves (5) for single coil for-
mation (n = 2) are obtained as solutions of the following problem:

min
a(t),b(t),c(t),d(t),e(t)

∫ tfin

0

Ẽ(a(t), b(t), c(t), d(t), e(t))dt

s.t. Ẽ(a(0), b(0), c(0), d(0), e(0)) = Ẽ0 (8)

Ẽ(a(tfin), b(tfin), c(tfin), d(tfin), e(tfin)) = Ẽfin

l(a(t), b(t), c(t), d(t), e(t)) = 2π t ∈ [0, tfin]

dẼ(a(t), b(t), c(t), d(t), e(t))

dt
≤0

where the initial (t = 0) and final (t = tfin = 12) conditions on the total energy

Ẽ (7) are chosen s.t. Ẽ0 ≥ Ẽfin.

• Problem (8) is approximated by dividing the time period [t0, tfin] (with
t0 = 0) into F equidistant intervals and considering:

min

F
∑

f=0

[

Ẽ(a(tf), b(tf), c(tf), d(tf), e(tf)) + γp(tf )
]

+ µ

F−1
∑

f=1

h(tf )

s.t. Ẽ(a(0), b(0), c(0), d(0), e(0)) = Ẽ0

Ẽ(a(tfin), b(tfin), c(tfin), d(tfin), e(tfin)) = Ẽfin (9)

l(a(tf ), b(tf ), c(tf ), d(tf ), e(tf )) = 2π f ∈ [0, F ]

Ẽ(a(tf ), b(tf ), c(tf ), d(tf ), e(tf ))≥ Ẽ(a(tf+1), b(tf+1), c(tf+1), d(tf+1), e(tf+1))

where the objective function includes penalizations on:

• distance of a(tf ), b(tf ), c(tf ), d(tf ), e(tf ) from zero with cost γ through:

p(tf ) = a2(tf ) + b2(tf ) + c2(tf ) + d2(tf ) + e2(tf ) , f ∈ [0, F ] (10)

• curvature by means of the central difference approximation of the second
derivative with cost µ as follows:

k(a(tf )) =

a(tf+1)−a(tf )
tf+1−tf

−
a(tf )−a(tf−1)

tf−tf−1

tf+1 − tf−1
, f ∈ [1, F − 1] (11)

and

h(tf ) = k(a(tf ))2 + k(b(tf ))2 + k(c(tf ))2 + k(d(tf ))2 + k(e(tf ))2 .

6 Kinematics by cubic spline interpolation

• Time evolution function a(t) is approximated by spline function a3
s(t),

a piecewise-polynomial real function of order 3 obtained by interpolat-
ing between all pairs of “knots” (tf−1, a(tf−1)) and (tf , a(tf )), f ∈ [1, F ],
where a(tf ) are solutions of problem (9).
The restriction of a3

s(t) to an f–interval is a polynomial continuously dif-
ferentiable to order 2 at the interior points tf , f = 1, . . . , F − 1.

• Altermative approach: cubic Hermite spline interpolation, a third-
degree spline with each polynomial as follows:

af,3
h (t) = a

(f)
00 h00(t) + a

(f)
01 h01(t) + a

(f)
10 h10(t) + a

(f)
11 h11(t) , f = 1, . . . , F

where














h00(t) = 2t3 − 3t2 + 1
h01(t) = −2t3 + 3t2

h10(t) = t3 − 2t2 + t
h11(t) = t3 − t2

are Hermite basis functions and a
(f)
00 and a

(f)
11 respectively the stating and

final point with their derivatives a
(f)
10 and a

(f)
01 in the f − interval (f =

1 . . . , F ).
Similarly for b(t), c(t), d(t), e(t).

7 Preliminary numerical results

7.1 Kinematics solution for folding mechanism

7.2 Energetics Ẽ = Ẽb + Ẽtw

• Convergence with respct to penalization costs µ, γ and number of inter-
vals F has been tested.

8 Conclusions and future directions

• Kinematics of coil formation as solution of the elastic energy minimiza-
tion problem (9) are proposed.

• By an alternating folding mechanism, the model considered can produce
high degree of coiling by keeping the writhing number bounded.

• We plan to extend the numerical investigation to kinematics of multiple
coils formation (N > 1) and to Fourier knots.
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