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ABSTRACT

In this poster we study different time-dependent evolutions of filament coiling
for modeling DNA proteic coding, viral spooling and chromosome packing.
For this, we introduce the concept of hierarchical kinematics to describe the
super-position of curve evolutions of increasing complexity, starting from a
base (primary) curve and evolving towards secondary and tertiary structures,
to capture higher-order coiling. Preliminary work [1] [2] has been gradually
extended to model mechanisms of proteic coding and viral spooling [3], and
here we extend these results further to investigate the role of geometric quan-
tities such as writhing, curvature and torsion localization, and relative rates, in
relation to elastic deformation energy, filament compaction and packing effi-
ciency.

1 The filament model

The DNA filament F is modelled by a thin inexestensible rod of constant
length L = 2π and of uniform circular cross–section of area A = πa2 (a ≪ L).

• The filament axis C is given by a simple, smooth space curve X = X (ξ)
where ξ ∈ [0, 2π].

2 Global geometric and topological quantities

2.1 Measures of coiling ( K), folding ( Wr) and twist ( Tw)

Let C be a closed, smooth, simple curve in R
3 given by X (ξ) : [0, L] −→ R

3,
with curvature c (ξ) and torsion τ (ξ) where ξ is a parameter along the curve
and t̂(ξ) ≡ X′(ξ)/‖X′(ξ)‖ is the unit tangent to C at ξ.

We consider the following quantities:

• normalized total curvature

K (C ) :=
1

2π

∮

C

c (ξ) ‖X′(ξ)‖dξ ; (1)

• writhing number (Fuller 1971)

Wr :=
1

4π

∮

C

∮

C

t̂(ξ) × t̂(ξ∗) · [X(ξ) − X(ξ∗)]

|X(ξ) − X(ξ∗)|3
‖X′(ξ)‖‖X′(ξ∗)‖dξdξ∗ ;

(2)

• total twist number

Tw :=
1

2π

∮

C

τ(ξ)‖X′(ξ)‖dξ +
1

2π
[Θ]F = T + N , (3)

where T is the normalized total torsion and N the normalized intrinsic
twist of the fibers of F around C .

2.2 Călug ăreanu–White formula

In the case of a closed filament F in isolation the sum of Wr and Tw is a topo-
logical invariant according to the well-known formula:

Lk = Wr + Tw , (4)

where Lk is the linking number of the filament F .

3 Kinematic equations for folding mechanism

We explore the folding mechanism by a family of time-dependent curves
X = X(ξ, t) (where t is a kinematical time) given by

X = Y + Z + . . . (higher-order folding) , (5)

where

• Y = Y(ξ, t) is a base curve which stands for the primary structure of the
macromolecule;

• Z = Z(ξ, t) generates coiling and prescribes the evolution of the primary
folding.

3.1 Modeling nucleosome spooling

A simplified model of nucleosome spooling is provided by the following
example:

X = X(ξ, t;n) :











x = [cos ξ − t cos(nξ)]/l(t)

y = [sin ξ − t sin(nξ)]/l(t)

z = [ξ + t sin ξ]/l(t)

, (6)

where

• the base curve is a standard helix Y = (cos ξ, sin ξ, ξ);

• multiple coils N = n − 1 are generated by the super-position of the
secondary function Z = (t cos(nξ), t sin(nξ), t sin ξ);

• in order to ensure the inexstensibility we have normalized by the length
function l(t).

3.2 Modeling viral spooling

A simplified model of viral spooling is provided by the following example:

X = X(ξ, t;n) :











x = [cos ξ − t cos(nξ)]/l(t)

y = [sin ξ − t sin(nξ)]/l(t)

z = t sin ξ/l(t)

, (7)

where

• the base curve is a circle Y = (cos ξ, sin ξ, 0);

• toroidal folding (N = n − 1 coils) is produced by the super-position of
the kinematics Z = (t cos(nξ), t sin(nξ), t sin ξ).

4 Bounded writhe and twist

• The writhing number Wr admits a physical interpretation in terms of the
average number of signed crossings made by the filament strands in space
(Fuller, 1971).

• The model equations (7), irrespectively of the number N = n − 1 of coils
formed, are charaterized by bounded writhing number Wr ∈ [0, 1]
(case (c) in the Figure above).

• Since the linking number Lk is conserved, then the total twist number Tw

is bounded too (very important for energy considerations).

• Similarity in functional behavior between the growths of the writhing num-
ber Wr and normalized total curvature K.

• The normalized total curvature K ∈ [0, n] i.e. it is limited by the number
N = n − 1 of coils formed.

5 Energetics of folding

Let us consider the linear elastic theory for a uniformly homogeneous and
isotropic filament (χ = Kb/Kt = 1 with Kb bending rigidity and Kt torsional
rigidity) .

• The deformation energy is given (to first order) by

E = Eb + Et + . . . (higher-order terms) (8)

where

Ẽb(t) =
Eb(t)

E0

=
1

2π

∮

C

(c(ξ, t))2‖X′(ξ)‖dξ norm. bending energy

Ẽt (t) =
Et (t)

E0

=
1

2π

∮

C

(Ω (ξ))
2 ‖X′ (ξ)‖2dξ norm. torsional energy

Ẽτ (t) =
Eτ (t)

E0

=
1

2π

∮

C

(τ(ξ, t))2‖X′(ξ)‖dξ norm. torsion energy

Ẽtw = Et|Ω0
= (Lk − Wr (t))

2
norm. mean twist energy

E0 =
Kb

2

∮

C

c2

0 ds reference energy = πKb .

6 Loop deformation and inflexional states

Generic behaviour (Moffatt & Ricca, 1992): at the point of inflexion the torsion
is singular but the singularity is integrable.

τ (ξ, t) =
X′ × X′′ · X

′′′

‖X′ × X′′‖2
→ ∞ as {ξ, t} → {ξi, ti} , but [T ] = 1 .

• The jump [T ] = 1 is compensated by an equal and opposite jump in N ;

• Tw remains a smooth function of ξ and t.

7 Compactibility and packing rate

Typical DNA compaction: D/L = O
(

10−5
)

.

If ρ is the average radius of curvature of the coiled state, then we have

L = 2π = (N + 1) 2πρ ;

if N = N(t) then the packing rate is given by ρ(t) = [N(t) + 1]−1 .
In general, for the k − th order coiling, starting from a fundamental structure of
length l0 to the final structure of length L we have

L = O(Nkl0) where N =
∏

k

Nk =⇒ ρ(t) = O(1/N(t)k) ,

which clearly shows a nonlinear dependence on N(t).

8 Conclusions

• Simple models of supecoiling for nucleosome and viral spooling are proposed;

• geometric and energetic aspects associated with the kinematics proposed are
analized;

• by an alternating folding mechanism, the model considered can produce
high degree of coiling by keeping the writhing number bounded.
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