Optimal kinematics of supercoiled filaments
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ABSTRACT

In this poster we propose kinematics of writhing and coiling of closed fila-
ments as numerical solutions of the elastic deformation energy minimization.
Preliminary work [1] [2] is here extended to require a monotonically decreas-
ing behaviour of the deformation energy of the system, favoring coils forma-
tion for given initial and final conditions. The analysis is performed by using
a simple thin filament model of circular cross-section under conservation of
self-linking number with elastic energy evaluated by means of bending and
torsional influence. Time evolution parameters are described by means piece-
wise polynomial transformations based on cubic spline. Proper constraints are
imposed so that the transformation is globally C? and the value of the param-
eters at grids points are the unknowns in a large-scale optimization problem.
These results may find useful applications in modelling natural phenomena,
from magnetic field dynamos in astrophysical flows to DNA packing in cell
biology [3].

1 The filament model

The filament F is modelled by a thin inexestensible rod of length L = 27 and
of uniform circular cross—section of area A = wa? (a < L).

The axis ¢ is a simple, smooth space curve X = X (£) where £ € [0, 27].

2 Measures of filament coiling

2.1 Measures of cailing ( K), folding ( Wr) and twist ( T'w)

Let % be a closed, smooth, simple curve in R? given by X (¢) : [0, L] — R?,
with curvature ¢ (£) and torsion 7 (§) where ¢ is a parameter along the curve
and t(¢) = X/(€)/||X/(€)| is the unit tangent to C at &.

We consider the following quantities:

e normalized total curvature
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o writhing number (Fuller 1971)
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where 7 is the normalized total torsion and N the normalized intrinsic
twist of the fibers of F around %

2.2 Calug areanu—-White formula

In the case of a closed filament F in isolation the sum of Wr and T'w is a topo-
logical invariant according to the well-known formula:

Lk=Wr+Tw, @)

where Lk is the linking number of the filament F.

3 Kinematic equations for folding mechanism 5 Coiling under elastic energy minimization 7 Preliminary numerical results
We consider a family of time-dependent curves X = X (£,¢,n) (where ¢ is a Kinematics functions a(t), b(t), c(t), d(t), e(t) from curves (5) for single coil for- 7.1 Kinematics solution for folding mechanism
kinematical time, see [1] and [2]), a sub-class of Fourier knots, given by: mation (n = 2) are obtained as solutions of the following problem:
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e Convergence with respct to penalization costs 1, v and number of inter-

6 Kinematics by cubic spline interpolation vals F' has been tested.

4 Energetics of folding

. i . . o Time evolution function a(t) is approximated by spline function a3(t), . . .
Let us FO?Tlder the 111:9;; e?Stf tlheo.rﬁ ;? r 2 u;lforrpl}‘; 'homc:ige;?eous ‘and} a piecewise-polynomial real function of order 3 obtained by interpolat- 8 Conclusions and future directions
isotropic filament (x = Ky/K; = 1 with K, bending rigidity and K, torsiona ing between all pairs of “knots” (t7_y,a(t;_1)) and (t7,a(t;)), f € [1,F), . . . . ' . o
rigidity). where a(t ) are solutions of problem (9). e Kinematics of coil formation as solution of the elastic energy minimiza-

o The deformation energy is given (to first order) by The restriction of a®(t) to an f-interval is a polynomial continuously dif- tion problem (9) are proposed.

ferentiable to order 2 at the interior points ty, f = 1,..., F — 1. e By an alternating folding mechanism, the model considered can produce

E = Ey + E; + ... (higher-order terms) (7) Altermative approach: cubic Hermite spline interpolation, a third- high degree of coiling by keeping the writhing number bounded.
degree spline with each polynomial as follows:

e We plan to extend the numerical investigation to kinematics of multiple
coils formation (N > 1) and to Fourier knots.
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