Optimal kinematics of supercoiled filaments

Francesca Maggioni ${ }^{1}$, Florian A. Potra ${ }^{2}$ and Marida Bertocchi
${ }^{1}$ Department of Mathematics Statistic, Computer Science and Applications, University of Bergamo ITALY, francesca.maggioni@unibg.it
${ }^{2}$ Department of Mathematics \& Statistic, University of Maryland, Baltimore County, U.S.A

1 The filament model
The filament \mathcal{F} is modelled by a thin inexestensible rod of length $L=2 \pi$ and of uniform circular cross-section of area $A=\pi a^{2}(a \ll L)$.

The axis \mathscr{C} is a simple, smooth space curve $\mathrm{X}=\mathbf{X}(\xi)$ where $\xi \in[0,2 \pi]$.

2 Measures of filament coiling

2.1 Measures of coiling (\mathcal{K}), folding ($W r$) and twist ($T w$)

Let \mathscr{C} be a closed, smooth, simple curve in \mathbb{R}^{3} given by $\mathbb{X}(\xi):[0, L] \longrightarrow \mathbb{R}^{3}$,
with curvature $c(\xi)$ and torsion $\tau(\xi)$ where ξ is a parameter along the curve with curvature $c(\xi)$ and torsion $\tau(\xi)$ where ξ is a a par
and $\hat{t}(\xi) \equiv \mathbf{X}^{\prime}(\xi) /\left\|\mathbf{X}^{\prime}(\xi)\right\|$ is the unit tangent to \mathcal{C} at ξ.
We consider the following quantities:

- normalized total curvature

$$
\mathcal{K}:=\frac{1}{2 \pi} \oint_{\varnothing} c(\xi)\left\|\mathbf{X}^{\prime}(\xi)\right\| d \xi
$$

- writhing number (Fuller 1971)
$W_{r}:=\frac{1}{4 \pi} \oint_{\varepsilon} \oint_{\delta} \frac{\hat{\mathfrak{t}}(\xi) \times \hat{\mathbf{t}}\left(\xi^{*}\right) \cdot\left[\mathbf{X}(\xi)-\mathbf{X}\left(\xi^{*}\right)\right]}{\left.\mid \mathbf{X}(\xi)-\mathbf{X}\left(\xi^{*}\right)\right]^{3}}\left\|\mathbf{X}^{\prime}(\xi)\right\|\left\|\mathbf{X}^{\prime}\left(\xi^{*}\right)\right\| d \xi d \xi^{*} ; ~(2)$
- total twist number

$$
T w:=\frac{1}{2 \pi} \oint_{\mathscr{E}} \tau(\xi)\left\|\mathbf{X}^{\prime}(\xi)\right\| \mathrm{d} \xi+\frac{1}{2 \pi}[\Theta]_{\mathcal{F}}=\mathcal{T}+\mathcal{N}
$$

where \mathcal{T} is the normalized total torsion and \mathcal{N} the normalized intrinsic twist of the fibers of \mathcal{F} around \mathscr{C}.

2.2 Călugăreanu-White formula

In the case of a closed filament \mathcal{F} in isolation the sum of $W r$ and $T w$ is a topological invariant according to the well-known formula:

$$
L k=W r+T w,
$$

where $L k$ is the linking number of the filament \mathcal{F}

3 Kinematic equations for folding mechanism
We consider a family of time-dependent curves $\mathrm{X}=\mathrm{X}(\xi, t, n)$ (where t is a
kinematical time, see $[1]$ and $[2])$, a sub-class of Fourier knots, given by:

$$
\mathbf{X}=\mathbf{X}(\xi, t, n):\left\{\begin{array}{l}
x=[a(t) \cos (\xi)+b(t) \cos (n \xi)] / /(t) \\
y=c(t) \sin (\xi)+d(t) \sin (n \xi)] / l(t) \\
z=[e(t) \sin (\xi)] / l(t)
\end{array}\right.
$$

where:

- The integer n controls the number $N=n-1$ of coils produced
- $a(t), b(t), c(t), d(t), e(t)$ are time-dependent functions. Notice than in $[1]$, time t was merely a kinematic parameter, while an appropriate time-
dependence prescription should be dictated by the particular physical process considered. See Section 5 for the model adopted to determine process considered. Ses
$a(t), b(t), c(t), d(t), e(t)$.
- In order to ensure the inextenisibility we have normalized by the length function

$$
l(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[\left(\frac{\partial x}{\partial \xi}\right)^{2}+\left(\frac{\partial y}{\partial \xi}\right)^{2}+\left(\frac{\partial z}{\partial \xi}\right)^{2}\right]^{1 / 2} \mathrm{~d} \xi .
$$

This rescaling ensures that the total length is kept fixed at $L=L(0)=2 \pi$.

- Eqs. (5) describe the time evolution of closed curves with initial condition $t=0$ chosen in orden to originate from a plane circle and to evolve to
form singly or multiply coiled configurations $\left(t_{f i n}=12\right.$) as follows: Reidemeister type I move

Final conditions
 $a(2)=0.24$
$b(12)=0.48$
$c(12)=0.24$
c $c(12)==.24$
$c(12)=0.48$
$e(12)=0.2$

Case of one coil formation ($n=2$)

4 Energetics of folding

Let us consider the linear elastic theory for a uniformly homogeneous and isotropic filament $\left(\chi=K_{b} / K_{t}=1\right.$ with K_{b} bending rigidity and K_{t} torsional giaty

- The deformation energy is given (to first order) by

$$
\begin{equation*}
\tilde{E}=\tilde{E}_{b}+\tilde{E}_{t}+\ldots \text { (higher-order terms) } \tag{}
\end{equation*}
$$

where

$\tilde{E}_{b}(t)=\frac{E_{b}(t)}{E_{0}}=\frac{1}{2 \pi} \oint_{\xi}(c(\xi, t))^{2}\left\|\mathbf{X}^{\prime}(\xi)\right\|$ d $\xi \quad$ norm. bending energy
$\tilde{E}_{t w w}(t)=E_{t} \mid \Omega_{0}=(L k-W r(t))^{2} \quad$ norm. mean twist energy $E_{0}=\frac{K_{b}}{2} \oint_{\mathscr{\varnothing}} c_{0}^{2}$ ds reference energy $=\pi K_{\mathrm{b}}$

- According to Michell-Zajac instability (1889-1962) we set $L k=3$. The energy that is going to be relaxed in coiling is:

$$
\begin{aligned}
\tilde{E}(0) & =\tilde{E}_{0}=1+L k^{2}= \\
\tilde{E}\left(t_{\text {fin }}\right) & =\tilde{E}_{\text {fin }}=8.5 .
\end{aligned}
$$

5 Coiling under elastic energy minimization
Kinematics functions $a(t), b(t), c(t), d(t), e(t)$ from curves (5) for single coil for-
mation $(n=2)$ are obtained as solutions of the following problem:

$$
\begin{aligned}
\min _{a(t), b(t), c(t), d t), e(t)} & \int_{0}^{t_{\text {fin }}} \tilde{E}(a(t), b(t), c(t), d(t), e(t)) \mathrm{d} t \\
\text { s.t. } & \tilde{E}(a(0), b(0), c(0), d(0), e(0))=\tilde{E}_{0} \\
& \tilde{E}\left(a\left(t_{\text {fit }}\right), b\left(t_{\text {fir }}\right), c\left(t_{\text {fin }}\right), d\left(t_{\text {fin }}\right), e\left(t_{\text {fin }}\right)\right)=\tilde{E}_{\text {fin }} \\
& l(8(t), b(t), c(t), d(t), e(t))=2 \pi \quad t \in\left[0, t_{\text {fin }}\right] \\
& \frac{\mathrm{d} \tilde{E}(a(t), b(t), c(t), d(t), e(t))}{\mathrm{d} t} \leq 0
\end{aligned}
$$

where the initial $(t=0)$ and final $\left(t=t_{\text {fin }}=12\right)$ conditions on the total energy $\tilde{E}(7)$ are chosen s.t. $\tilde{E}_{0} \geq \tilde{E}_{f i n}$

- Problem (8) is approximated by dividing the time period $\left[t_{0}, t_{\text {fin }}\right]$ (with $t_{0}=0$) into F equidistant intervals and considering
$\min \sum_{f=0}^{F}\left[\tilde{E}\left(a\left(t_{f}\right), b\left(t_{f}\right), c\left(t_{f}\right), d\left(t_{f}\right), e\left(t_{f}\right)\right)+\gamma p\left(t_{f}\right)\right]+\mu \sum_{f=1}^{F-1} h\left(t_{f}\right)$
. $\tilde{E}(a(0), b(0), c(0), d(0), e(0))=\tilde{E}_{0}$
$\tilde{E}\left(a\left(t_{\text {fin }}\right), b\left(t_{\text {fin }}\right), c\left(t_{\text {fin }}\right), d\left(t_{\text {fin }}\right), e\left(t_{f_{\text {fin }}}\right)\right)=\tilde{E}_{\text {fin }}$
$\tilde{E}\left(a\left(t_{f}\right), b\left(t_{f}\right) \cdot c\left(t_{f}\right) \cdot d\left(t_{f}\right), e\left(t_{f}\right)\right)>\tilde{E}\left(a\left(t_{f+1}\right) b\left(t_{f+1}\right) c\left(t_{+}\right) d\left(t_{f}\right) c\left(t_{f}\right)\right.$
where the objective function includes penalizations on:
- distance of $a\left(t_{f}\right), b\left(t_{f}\right), c\left(t_{f}\right), d\left(t_{f}\right), e\left(t_{f}\right)$ from zero with cost γ through: $p\left(t_{f}\right)=a^{2}\left(t_{f}\right)+b^{2}\left(t_{f}\right)+c^{2}\left(t_{f}\right)+d^{2}\left(t_{f}\right)+e^{2}\left(t_{f}\right), \quad f \in[0, F] \quad$ (10)
- curvature by means of the central difference approximation of the second derivative with cost μ as follows:

$$
k\left(a\left(t_{f}\right)\right)=\frac{\frac{a\left(t_{f+1}\right)-a\left(t_{f}\right)}{\left.t_{f+1}-t_{f}\right)}-\frac{a\left(t_{f}\right)-a\left(t_{f-1}\right)}{t_{f f}\left(t_{-1}\right)}}{t_{f+1}-t_{f-1}}, f \in[1, F-1]
$$

and
$h\left(t_{f}\right)=k\left(a\left(t_{f}\right)\right)^{2}+k\left(b\left(t_{f}\right)\right)^{2}+k\left(c\left(t_{f}\right)\right)^{2}+k\left(d\left(t_{f}\right)\right)^{2}+k\left(e\left(t_{f}\right)\right)^{2}$.

6 Kinematics by cubic spline interpolation

- Time evolution function $a(t)$ is approximated by spline function $a_{s}^{3}(t)$, a piecewise-polynomial real function of order 3 obtained by interpolat-
ing between all pairs of "knots" ($t_{f-1}, a\left(t_{f-1}\right)$ and $\left(t_{f}, a\left(t_{f}\right)\right), f \in[1, F]$, ing between all pairs of "knots" $\left(t_{f-1}, a\left(t_{f-1}\right)\right)$ and $\left(t_{f}, a\left(t_{f}\right)\right), f \in[1, F]$,
where $a\left(t_{f}\right)$ are solutions of problem (9).
The restriction of $a_{s}^{3}(t)$ to a a f-interval is a polynomial continuously difWhere $a\left(t_{f}\right)$ are solutions of problem (9).
The restriction of $a_{s}^{3}(t)$ to an f-interval is a polynomial continuously dif-
ferentiable to order 2 at the interior points $t_{f}, f=1, \ldots, F-1$. ferentiable to order 2 at the interior points $t_{f}, f=1, \ldots, F-1$. Altermative approach: cubic Hermite spline interpolation, a third-
degree spline with each polynomial as follows:
$a_{h}^{f, 3}(t)=a_{00}^{(f)} h_{00}(t)+a_{01}^{(f)} h_{01}(t)+a_{10}^{(f)} h_{10}(t)+a_{11}^{(f)} h_{11}(t), \quad f=1, \ldots, F$ where

are Hermite basis functions and $a_{00}^{(f)}$ and $a_{11}^{(f)}$ respectively the stating and are fermite basis functions and a_{00} and a_{11} respectively the stating and
final point with their derivatives $\left.a_{10}^{f(}\right)$ and $a_{01}^{(f)}$ in the $f-$ interval $(f=$
f. 1....F)
Similarly for $b(t), c(t), d(t), e(t)$.

7 Preliminary numerical results

7.1 Kinematics solution for folding mechanism

Solution in case of one coil formation ($n=2$)
7.2 Energetics $\tilde{E}=\tilde{E}_{b}+\tilde{E}_{t}$

8 Conclusions and future directions

- Kinematics of coil formation as solution of the elastic energy minimization problem (9) are proposed.
- By an alternating folding mechanism, the model considered can produce
- high degree of coiling by keeping the writhing number bounded
- We plan to extend the numerical investigation to kinematics of multiple
coils formation $(N>1)$ and to Fourier knots. We plan to extend the numerical investigation
coils formation $(N>1)$ and to Fourier knots.

References

[1] Maggioni, F. \& Ricca, R.L. (2006) Writhing and coiling of closed filaments. Proc. Roy
Soc. $A 462$. $15151-3166$.
Soc. A, 462, 3151-3166.
[2] Ricca, R.L. \& Maggioni, F. (2008) Multiple
Comp. \& Math. woith Appl., $55,1044-1053$.
viral spooling. In PAMM, CIIAM Zurich 2007, 7 , I Issue 1 , $212120011-2120012$.
[4] Maggioni, F., Potra, FA. \& Bertocchi, M. Optimal kinematics of supercoiled fila-
ments (in preparation).

